لیونہارڈ اویلر
لیونہارڈ پال اویلر (Leonhard Paul Euler) (پیدائش: 15 اپریل 1707ء وفات: 18 ستمبر 1783ء) سویٹزر لینڈ سے تعلق رکھنے والا نامور ریاضی دان اور طبیعیات دان تھا جس کی عمر کا بیشتر حصہ جرمنی اور روس میں گذرا۔ اس نے ریاضی کی بہت سی شاخوں میں کام کیا اور بہت اہم دریافتیں کیں۔ احصا، نظریۂ گروہ، نظریۂ عدد، اطلاقی ریاضیات، تالیفیات، ہندسہ، فلکیات، طبیعیات اور ریاضی کی بہت سی شاخوں میں قابل قدر کام کیا۔ نیز اس نے دالہ کا تصور بھی متعارف کرایا [42]۔ لیونہارڈ اویلر ریاضی کے ہر دور میں موجود عظیم ریاضی دانوں کی فہرست میں ہمیشہ نمایاں مقام پر فائز رہا۔ اس کی تمام معیاری تصانیف کو اگر یکجا کیا جائے تو بآسانی 60 سے 80 جلدیں شائع کی جا سکتی ہیں۔[43]۔
زندگی
ترمیماصطلاح | term |
---|---|
حسابان |
calculus |
ابتدائی زندگی
ترمیماویلر 15 اپریل 1707ء کو سویٹزر لینڈ کے شہر بازیل میں پال اویلر کے گھر پیدا ہوا۔ اس کی ماں مارگریٹ بروکر ایک پادری کی بیٹی تھی۔ اویلر کی دو چھوٹی بہنیں آنا ماریہ اور ماریہ میڈگلن بھی تھیں۔ اویلر کی پیدائش کے فوراً بعد یہ خاندان ریہین منتقل ہو گیا۔ اویلر نے اپنے بچپن کا کافی حصہ یہاں گزارا۔ پال اویلر کے برنولی خاندان سے کافی دوستانہ تعلقات تھے اور وہ جون برنولی جو اُس وقت یورپ کا چوٹی کا ریاضی دان تھا دوست تھا، بعد میں اسی نے نوجوان اویلر پر گہرا اثر ڈالا۔ اویلر نے اپنی رسمی تعلیم بازیل سے شروع کی اور 13 سال کی عمر میں جامعہ بازیل میں داخلہ لے لیا۔ 1723ء میں اویلر نے فلسفہ میں ماسٹر کیا جہاں اس نے رینے دیکارت اور نیوٹن کے فلسفے کے تقابلی جائزے پر تحقیقی مقالہ لکھا۔ اس وقت جون برنولی اسے ہفتہ کی شام کو پڑھایا کرتا تھا۔ اس نے جلد ہی محسوس کر لیا کہ نوجوان اویلر ریاضی میں خاصا ذہین واقع ہوا ہے۔[44]۔ چونکہ اس کا باپ اسے پادری بنانا چاہتا تھا اس لیے اویلر اس وقت اپنے باپ کی خواہش پر الٰہیات، یونانی اور عبرانی پڑھ رہا تھا۔ لیکن جون برنولی نے اس کے باپ کو قائل کر لیا کہ اویلر کی منزل ایک عظیم ریاضی دان بننا ہے۔ 1726ء میں اس نے آواز کے انتشار پر ایک مقالہ لکھا ۔۔[45] اس وقت وہ جامعہ بازیل میں کوئی مقام حاصل کرنا چاہ رہا تھا لیکن اس میں اسے ناکامی ہوئی۔ 1727ء میں وہ پیرس اکادمی کے زیر اہتمام ایک سالانہ مقابلہ میں شریک ہوا جس میں اویلر نے دوسرا انعام حاصل کیا۔ بعد ازاں اویلر نے یہ مقابلہ اپنی زندگی میں 12 دفعہ جیتا [46]
سینٹ پیٹرز برگ
ترمیماس وقت جون برنولی کے دو بیٹے ڈینیال برنولی اور نکولس برنولی دوم سینٹ پیٹرز برگ میں ایمپیریل رشیین اکادمی آف سائنس میں کام کر رہے تھے۔ 10 جولائی 1726ء کو نکولس برنولی کا روس میں صرف ایک سال گزارنے کے بعدانتقال ہو گیا۔ جب ڈینیال برنولی نے اپنے بھائی کی جگہ سنبھالی تو اس نے اپنے دیرینہ دوست لیونہارڈ اویلر کو فعلیات کے منصب کی پیشکش کی جسے اویلر نے بصد شوق قبول کر لیا۔ مگر اسے وہاں پہنچنے میں کچھ تاخیر ہو گئی جبکہ اس دوران جامعہ بازیل میں طبیعیات کے استاد کی حثیت سے تقرری کی درخواست دی جسے رد کر دیا گیا۔[47]۔ اویلر 17 مارچ 1727ء کو سینٹ پیٹرز برگ چلا گیا جہاں اس کی ترقی طب کے شعبہ سے ریاضی کے شعبہ میں ہو گئی۔ اس نے روسی زبان بھی سیکھ لی اور وہیں مقیم ہو گیا۔
اس اکادمی کا مقصد روس میں معیارِ تعلیم بلند کرنا اور روس و یورپ کے درمیان موجود سائنسی خلیج کو کم کرنا تھا۔ اس لیے یہ جگہ اولیر جیسے بیرونی علما ومفکرین کے لیے انتہائی پرکشش جگہ تھی۔ اکادمی کے پاس انتہائی وسیع مالی ذرائع تھے اسی کے ساتھ ایک وسیع وعریض کتب خانہ بھی موجود تھا۔ نیز طلبہ کی آمد بھی بہت کم تھی اس لیے اساتذہ پر تعلیم کا بوجھ بھی کافی کم ہوتا تھا، لہذا وہ اپنا زیادہ وقت تحقیق میں صرف کرتے تھے [48] اور اکادمی بھی ان کی حوصلہ افزائی کرتی تھی اور ان کو تحقیقات کے لیے کافی وقت دیا جاتا تھا۔ 1731ء میں اویلر طبیعیات کا استاد بن گیا اور دو سال بعد جب ڈینیال روس سے واپس بازیل چلا گیا تو اویلر کو شعبہ ریاضی کا سربراہ بنا دیا گیا[49]۔ 7 جنوری 1734ء کو اس نے کیتھرینا سے شادی کی۔ ان کے تیرہ بچے ہوئے مگر صرف پانچ ہی زندہ رہ سکے [50]۔
برلن
ترمیمروس کے بحران کی وجہ سے اویلر 19 جون 1741ء کو فریڈرک دوم کی پیشکش پر برلن آ گیا اور برلن اکادمی میں شمولیت اختیار کر لی۔ وہ وہاں 25 سال رہا، اس دوران اس نے 380 سے زیادہ مقالات تحریر کیے۔ برلن میں ہی اس کی لکھی ہوئی دو تصانیف بہت مشہور ہوئیں جن میں ایک تعارف تحلیلِ لامتناہی اور دوسری اساسِ حسابانِ تفرقی ہے جو بالترتیب 1748ء [51] اور 1755ء [52] میں شائع ہوئے۔
اسی دوران فرِیڈرک دوم نے اسے اپنی بھتیجی کو پڑھانے کا کہا۔ اویلر نے اسے تقریبا 200 خطوط لکھے جو بعد میں خطوط اویلر بر مختلف موضوعاتِ فلسفہ فطرت بنام جرمن شہزادی کے نام سے کتابی شکل میں شائع ہو کر بہت مشہور ہوئے[53]۔
اویلر نے ان خطوط میں طبیعیات، ریاضی اور مذہب کے مختلف گوشوں پر کلام کیا ہے۔ اس سے اویلر کی شخصیت پر کافی روشنی پڑتی ہے۔ درحقیقت اویلر کا یہ کام اس کی ریاضی کی تصانیف سے زیادہ مقبول ہوا اور یورپ و امریکہ میں بھی شائع کیا گیا۔ اس کی شہرت کی ایک وجہ اویلر کا سائنسی اصطلاحات اور مواد کو عام آدمی کے لیے لکھنے کی صلاحیت ہے جو عموما محققین میں کم ہی ہوتی ہے۔
برلن اکادمی کی شہرت و وقار میں اویلر کا قابل ذکر اور نمایاں حصہ شامل تھا لیکن اس کے باوجود اسے برلن چھوڑ کر جانا پڑا۔ اس کی وجہ اس کے فریڈرک دوم اور اویلر میں تنازع تھا۔ فرانسیسی فلسفی اور مصنف والٹیئر ان دنوں فریڈرک کا خاص آدمی تھا۔ اویلر کے خیالات بہت حد تک والٹیئر سے مختلف ہوا کرتے تھے۔ اویلر کو بلاغت کی کوئی تربیت نہیں تھی مزید وہ ان معاملات پر رائے زنی کرنے سے گریز کرتا تھا جن کا اس سے کوئی واسطہ نہیں تھا اس لیے وہ اکثر والٹیئر کا نشانہ بنتا تھا۔ نیز فریڈرک کو اویلر کی ہندسیات کی صلاحیتوں پر بھی مایوسی تھی۔
نگاہ کی کمزوری
ترمیماویلر کی نگاہ اس کی پوری ریاضی کی پیشہ ورانہ زندگی کے دوران خراب سے خراب تر ہی ہوتی رہی۔ 1735ء میں اسے ایک جان لیوا بخار ہوا اس کے تین سال بعد اس کی داہنی آنکھ کی بینائی ختم ہو گئی۔ اویلر سینٹ پیٹرز برگ میں کی گئی نقشہ نگاری کو اس کا باعث سمجھتا تھا۔ اس کی بینائی جرمنی میں مزید خراب ہوتی گئی اور نوبت یہاں تک آگئی کہ فریڈرک اس کو سیکلوپ کہنے لگ گیا جو یونانی اساطیر میں ایک آنکھ والے کردار ہیں۔ بعد میں اس کی دوسری آنکھ بھی خراب ہونے لگی اور اس میں موتیا بند ہو گیا۔ اس کے کچھ ہی ہفتوں بعد وہ 1776ء میں تقریباً نابینا ہو گیا۔ اس کے باوجود اس کے کام میں کوئی کمی نہ آئی اور وہ اسی طرح اعلی معیار کی تحقیق کرتا رہا۔ اس نے اپنی بینائی کی کمزوری کی تلافی اپنے دماغی حساب کتاب کی صلاحیت اور حیرت انگیز یاداشت سے کیا۔ وہ انیڈ اور ورجل نہ صرف زبانی سنا دیتا تھا، بلکہ یہ بھی بتا دیتا تھا کی کس صفحہ کی پہلی اور آخری سطر میں کیا لکھا ہوا ہے۔ اس کے کام کرنے کی صلاحیت ریاضی کے کچھ حصوں میں بڑھ گئی۔ 1775ء میں وہ اوسط ایک ہفتے میں ایک تحقیقی مقالہ لکھ لیتا تھا۔
روس واپسی
ترمیماس دوران روس کے حالات کافی بہتر ہو گئے تھے، اس لیے اویلر 1776ء میں سینٹ پیٹرز برگ اکادمی کی دعوت قبول کرتے ہوئے وہاں چلا گیا اور بقیہ زندگی وہیں گزاری۔ اس کے دوسرے قیام کا آغاز کچھ اچھا نہیں ہوا۔ 1771ء کی آگ میں نہ صرف اس کا گھر جل گیا بلکہ خود بھی مرتے مرتے بچا۔ 1773ء میں اس کی بیوی 40 سال کی رفاقت کے بعد انتقال کر گئی۔ اپنی بیوی کی وفات کے تین سال بعد اس نے اپنی بیوی کی سوتیلی بہن سے شادی کر لی۔[54] جو اس کے انتقال تک بقیدحیات رہی۔ 18 ستمبر 1783ء کو اپنے خاندان کے ساتھ کھانا کھانے کے بعد وہ اپنے ساتھی اینڈرز جون لیکسل کے ساتھ نو دریافت شدہ سیارہ یورینس اور اس کے مدار پر بات کرتے ہوئے دماغی حربان خون میں مبتلا ہوا اور چند گھنٹے بعد اس کا انتقال ہو گیا[55]
ریاضی اور طبیعیات میں اویلر کا کام
ترمیماویلر نے اپنے دور کی ریاضی کی ہر شاخ پر کام کیا ہے، بلکہ اس نے ریاضی کی کچھ نئی شاخیں دریافت بھی کی ہیں۔ اس کا نام ریاضی کی تاریخ میں بہت تمایاں ہے۔ اس کی تمام تصانیف اگر یکجا کی جائے تو 60 سے 80 جلدوں پر مشتمل ہوں گی۔ اویلر کا نام ریاضی کے بہت سے موضوعات کے ساتھ وابستہ ہے۔ اویلر وہ واحد ریاضی دان ہے جس کے نام سے دو اعداد منسوب ہیں۔ ایک ہے اویلر عدد e جس کی قدر 2.71828 ہے اور جو حسابان میں استعمال ہوتا ہے اور دوسرا اویلر دائم جس کی قدر تقریباً 0.57721 ہے۔ تاہم ابھی تک یہ نہیں معلوم ہوا کہ اویلر دائم ناطق عدد ہے یا غیر ناطق ۔[56]
ریاضی کی علامتیں
ترمیماویلر نے اپنی مقبول درسی کُتب کے ذریعہ ریاضی کی بہت ساری علامتیں متعارف اور مقبول کرائیں۔ ان میں سے سب سے اہم دالہ کا تصور ہے۔ وہ پہلا ریاضی دان تھا جس نے فنکشن کے لیے کی علامت استعمال کی۔ اس نے مثلثیاتی دالہ کی جدید علامت متعارف کرائی۔ اس کے علاوہ اس نے قدرتی لاگرتھم کی اساس کے لیے e (عائلر عدد)، یونانی حرف Σ جمع کرنے لے لیے اور تخیلی عدد کے لیے استعمال کیا [57]۔ اس نے کے استعمال کو بھی مقبول بنایا اگرچہ وہ اس کے نام سے منسوب نہیں ہے [58]۔
ریاضیاتی تحلیل
ترمیم18 ویں صدی میں ریاضی میں حسابان میں تحقیق کا کام زوروں پر تھا اور برنولی خاندان اس کی ابتدائی ترقی کا کافی حد تک ذمہ دار تھا۔ ان کی ہی وجہ سے اویلر نے اس میں کافی دلچسپی لی اور یہ اس کے کام کا ایک بڑا حصہ بن گیا۔ اگرچہ اویلر کا کچھ کام دور حاضر کی جدید ریاضی کے سخت اصولوں پر پورا نہیں اترتا، پھر بھی اس کے خیالات نے ریاضی کو کافی وسعت بخشی۔ اویلر کا نام تحلیل میں کسی تعارف کا محتاج نہیں، اس نے اکثر تحلیل کو قوتی سلسلہ کے لیے استعمال کیا اور فنکشن کو لامتناہی حصوں کے حاصل جمع کی صورت میں دکھایا۔ مثال کے طور پر:
قوتی سلسلہ کے جرات مندانہ استعمال کی وجہ سے 1735ء میں وہ مشہور زمانہ مسئلہ بازیل حل کرنے میں کامیاب ہو گیا جو اس وقت کے ریاضی دانوں کے لیے سر درد بنا ہوا تھا[59] ۔ 1741ء میں اس نے اپنے کام کی مزید وضاحت شائع کی۔ اس نے مسئلہ بازیل حل کرتے ہوئے ثابت کیا کہ
اویلر نے اَسّی دالہ اور لاگرتھم کا استعمال اپنی تصانیف میں متعارف کرایا۔ نیز اس نے لاگرتھم کو قوتی سلسلہ میں لکھنے کا طریقہ بھی دریافت کیا۔ اسی طرح اس نے کامیابی سے منفی اعداد اور مخلوط عدد کا بھی لاگرتھم معلوم کیا جس کی وجہ سے لاگرتھم بہت زیادہ کارآمد ہو گئے اور ان کا اطلاق بہت سی چگہوں پر ہونے لگا[60]۔ اس نے مختلط عدد کا بھی اسّی فنکشن معلوم کیا اور اس کا مثلثیاتی فنکشن کے ساتھ رشتہ بھی دریافت کیا۔ اویلر قاعدہ سے کسی بھی حقیقی عدد φ کے لیے مختلط اَسّی نکالنے کا قاعدہ بتایا:
اس قاعدہ کی خاص شکل کو (جب ہو) اویلر شناخت کہتے ہیں:
یہ ریاضی کی سب سے خوبصورت مساوات کہی جاتی ہے۔ اس ایک مساوات میں ریاضی کے پانچ مشہور دائم: 0، 1، ، اور e ایک ساتھ موجود ہیں۔ مزید ریاضی کے تین بنیادی عمل، جمع، ضرب اور قوت بھی اس ایک چھوٹی سی مساوات میں موجود ہیں۔ مشہور جرمن ریاضی دان کارل فریدریش گاؤس کا کہنا ہے کہ اگر کسی طالب علم کو یہ مساوات بتاتے ہی فورا سمجھ میں نہیں آئی تو وہ کبھی اچھا ریاضی دان نہیں بن سکتا۔
فرانسیسی ریاضی دان ابراہم ڈی موافر کا ڈی موافر کا قاعدہ اویلر کی اکائی کا ہی نتیجہ ہے۔
یہ قاعدہ اس لیے بہت اہم ہے کہ یہ مختلط عدد اور مثلثیاتی فنکشن کے درمیان تعلق کو ظاہر کرتا ہے۔
اس کے علاوہ اس نے ماروائی دالہ کا نظریہ اور عاملیہ کی جامع صورت گاما دالہ دریافت کی (جو حقیقی اعداد اور منفی اعداد کا 'عاملیہ' بتاتی ہے )۔ اس نے تکامل کی مخلوط عدد میں بھی حد نکالنے کا طریقہ دریافت کیا جس نے آگے جاکر مختلط تحلیل کی بنیاد رکھی۔ اس نے جوزف لوئی لاگرانج کے ساتھ مل کر حسابانِ تغیرات کی بھی بنیادرکھی۔
نظریۂ عدد
ترمیماویلر کی نظریۂ عدد میں دلچسپی اس کے سینٹ پیٹرز برگ کے دوست کرسٹین گولڈباغ کی وجہ سے ہوئی۔ اس میں اس کا ابتدائی کام پیری ڈی فرما کی تصنیف پر ہے۔ اویلر نے اس کے کچھ کاموں میں اضافہ کیا اور کچھ تخمینوں کو غلط ثابت کیا۔ اویلر تحلیلی طریقوں سے نظریۂ عدد کے مسائل حل کرنے کے استعمال کا بانی تھا۔ اس طرح اس نے دو مختلف ریاضی کی شاخوں کو یکجا کرنے کا بنیادی کام کیا تھا اور ایک نئی شاخ تحلیلی نظریۂ عدد کی بنیاد رکھی تھی۔ اس نے ان طریقون سے اولی اعداد کی تقسیم اور توزیع کا مطالعہ کیا۔ اس کے کام کی وجہ سے اولیٰ عدد قضیہ کی بنیاد پڑی [61]۔
اس نے ثابت کیا کی اولیٰ اعداد کے متقابل کا مجموعہ انفرج ہوتا ہے۔ اس طرح اس نے برنھارڈ ریمان کے زیٹا دالہ اور اولیٰ اعداد کے درمیان تعلق کو دریافت کیا۔ اس نے ثابت کیا کہ مرسن اولیٰ عدد ہے اور 1867ء تک یہ سب سے بڑا دریافت شدہ اولیٰ عدد تھا ۔[62]
نظریۂ گراف
ترمیماویلر نظریۂ گراف کا بانی ہے۔ 1736ء میں اس نے کونگسبرگ کے سات پُلوں کا مسئلہ حل کر کے اس کی بنیاد رکھی [63]۔ اس مسئلہ کے مطابق کونگسبرگ میں دو جزیروں کو ملانے والے سات پُل تھے اور سوال یہ تھا کہ کیا یہ ممکن ہے کہ ہم ہر پل سے صرف ایک بار گزرتے ہوئے اسی جگہ واپس آجائیں جہاں سے ہم نے شروع کیا تھا۔ اویلر نے ثابت کیا کہ یہ ناممکن ہے۔ یہ نظریۂ گراف کا پہلا قضیہ تھا۔
اویلر نے محدب کثر سطحی کے راس، کنارہ اور چہرہ کے درمیان تعلق کے لیے ایک قاعدہ بھی دریافت کیا۔ اس قاعدے کے مطابق ۔[64] بعد میں اس کے کام کو دیگر ریاضی دانوں نے بھی مزید ترقی دی اور اس سے ریاضی کی ایک نئی شاخ وضعیت وجود میں آگئی۔
اطلاقی ریاضیات
ترمیماویلر کو اصل زندگی کے مسائل تجزیاتی طور پر حل کرنے میں بہت کامیابی حاصل ہوئی۔ اس نے برنولی عدد، فورئیہ سلسلہ (اپنی ابتدائی شکل میں)، اویلر عدد، اویلر دائم اور e کو بہت سے مسائل حل کرنے کے لیے استعمال کیا۔ اس نے لائبنیز کی تفرقی مساوات آئزک نیوٹن کے طریقہ فاضلہ کی مدد سے حل کیا۔ اس کے علاوہ اس نے بہت سے ایسے طریقے دریافت کیے جس کی مدد سے حسابان کو طبیعیات کے مسائل حل کرنے میں بہت آسانی ہو گئی۔ اس نے تفرقی مساوات کے استعمال میں بہت سہولت پیدا کی خاص طور پر اویلر دائم (جسے گاما دائم بھی کہتے ہیں) کو متعارف کرا کر۔
اویلر کی ایک غیر معمولی دلچسپی موسیقی میں ریاضی کا استعمال تھا۔ اس نے 1739ء میں نظریہ موسیقی پر ریاضی استعمال کرتے ہوئے ایک کتاب لکھی مگر اس کتاب کو بہت زیادہ پزیرائی نہیں مل سکی، کیونکہ اس کتاب میں ریاضی دانوں کے لیے بہت زیادہ موسیقی تھی اور موسیقاروں کے لیے بہت زیادہ ریاضی تھی [65]۔
طبیعیات اور فلکیات
ترمیماویلر نے اویلر برنولی بیم مساوات دریافت کرنے میں بہت اہم کام کیا اور اب یہ مساوات ہندسیات کی ایک نہایت اہم اور بنیادی مساوات سمجھی جاتی ہے۔ اویلر نے تجزیاتی طریقہ سے میکانیات کے مسائل حل کیے بلکہ اسے اجرام فلکی کے مسائل حل کرنے کے لیے بھی استعمال کیا۔ اس نے نہایت درستی کے ساتھ دم دار ستارے اور دیگر اجرام فلکی کے مدار معلوم کیے۔ اس نے بصریات میں بھی گہری دلچسپی لی اور اس میں بھی بہت کام کیا۔ 1740ء میں اس نے روشنی کی موجی ماہیت کے متعلق ایک مقالہ لکھا۔
منتخب کتابیات
ترمیماویلر کی کتابیات نہایت وسیع ہے۔ اس کی مشہور کتابیں مندرجہ ذیل ہیں۔
- الجبرا کے عناصر عناصر الجبرا، ابتدائی الجبرا کی کتاب جس میں الجبرا کا جامع تعارف موجود ہے۔
- لامتناہی تحلیل کا تعارف، ریاضیاتی تحلیل پر 1748ء پر لکھی گئی کتاب۔
- دو حسابان پر کتابیں۔
- جرمن شہزادی کو لکھے گئے خطوط۔ آن لائن[مردہ ربط] (فرانسیسی زبان میں)
- لاطینی زبان میں لکھی گئی کتاب جو منحنی خط، کم از کم قدر اور زیادہ سے زیادہ قدر پر ہے ۔[66]
مزید دیکھیے
ترمیمحوالہ جات
ترمیم- ^ ا ب پ ت ٹ ث ج چ ح خ HDS ID: https://hls-dhs-dss.ch/de/articles/018751
- ↑ مصنف: فرانس کا قومی کتب خانہ — عنوان : اوپن ڈیٹا پلیٹ فارم — بی این ایف - آئی ڈی: https://catalogue.bnf.fr/ark:/12148/cb12157666x — اخذ شدہ بتاریخ: 10 اکتوبر 2015 — اجازت نامہ: آزاد اجازت نامہ
- ↑ بی این ایف - آئی ڈی: https://catalogue.bnf.fr/ark:/12148/cb12157666x — اخذ شدہ بتاریخ: 22 اگست 2017
- ^ ا ب ایس این اے سی آرک آئی ڈی: https://snaccooperative.org/ark:/99166/w66d66q0 — بنام: Leonhard Euler — اخذ شدہ بتاریخ: 9 اکتوبر 2017
- ^ ا ب عنوان : Nationalencyklopedin — NE.se ID: https://www.ne.se/uppslagsverk/encyklopedi/lång/leonhard-euler — بنام: Leonhard Euler — اخذ شدہ بتاریخ: 9 اکتوبر 2017
- ^ ا ب فائنڈ اے گریو میموریل شناخت کنندہ: https://www.findagrave.com/memorial/15567379 — بنام: Leonhard Euler — اخذ شدہ بتاریخ: 9 اکتوبر 2017
- ^ ا ب عنوان : Store norske leksikon — ایس این ایل آئی ڈی: https://wikidata-externalid-url.toolforge.org/?p=4342&url_prefix=https://snl.no/&id=Leonhard_Euler — بنام: Leonhard Euler
- ↑ ربط: https://d-nb.info/gnd/118531379 — اخذ شدہ بتاریخ: 10 دسمبر 2014 — اجازت نامہ: CC0
- ^ ا ب مدیر: الیکزینڈر پروکورو — عنوان : Большая советская энциклопедия — اشاعت سوم — باب: Эйлер Леонард — ربط: https://d-nb.info/gnd/118531379 — اخذ شدہ بتاریخ: 28 ستمبر 2015
- ^ ا ب Accademia delle Scienze di Torino ID: https://www.accademiadellescienze.it/accademia/soci/leonhard-euler — اخذ شدہ بتاریخ: 1 دسمبر 2020
- ↑ JSTOR article ID: https://www.jstor.org/stable/2298449
- ^ ا ب پ https://www.vondel.humanities.uva.nl/ecartico/persons/57353 — اخذ شدہ بتاریخ: 14 اگست 2023
- ↑ عنوان : Эйлер, Леонард — https://www.vondel.humanities.uva.nl/ecartico/persons/57353
- ↑ مصنف: فرانس کا قومی کتب خانہ — عنوان : اوپن ڈیٹا پلیٹ فارم — بی این ایف - آئی ڈی: https://catalogue.bnf.fr/ark:/12148/cb12157666x — اجازت نامہ: آزاد اجازت نامہ
- ↑ Brockhaus Enzyklopädie online ID: https://brockhaus.de/ecs/enzy/article/euler-leonhard — بنام: Leonhard Euler
- ↑ ربط: https://d-nb.info/gnd/118531379 — اخذ شدہ بتاریخ: 30 دسمبر 2014 — اجازت نامہ: CC0
- ↑ Dan Graves (1996)۔ Scientists of Faith۔ Grand Rapids، MI: Kregel Resources۔ صفحہ: 85–86
- ↑ E. T. Bell (1953)۔ Men of Mathematics، Vol. 1۔ London: Penguin۔ صفحہ: 155
- ↑ مصنف: اینڈریو بیل — عنوان : Encyclopædia Britannica — ناشر: انسائیکلوپیڈیا برٹانیکا انک.
- ↑ ربط: این این ڈی بی شخصی آئی ڈی
- ^ ا ب https://www.amacad.org/sites/default/files/academy/multimedia/pdfs/publications/bookofmembers/ChapterE.pdf
- ↑ https://www.amacad.org/sites/default/files/academy/multimedia/pdfs/publications/bookofmembers/ChapterE.pdf
- ↑ عنوان : Prime Mystery: The Life and Mathematic of Sophie Germain — ISBN 978-1-4969-6502-8
- ^ ا ب پ ت عنوان : Становление физиологии в России: XVIII век — جلد: 8 — صفحہ: 9-24 — شمارہ: 2
- ↑ Mathematics Genealogy Project ID: https://mathgenealogy.org/id.php?id=38586 — اخذ شدہ بتاریخ: 17 فروری 2019
- ↑ http://www.nndb.com/cemetery/803/000208179/
- ↑ این کے سی آر - اے یو ٹی شناخت کنندہ: https://aleph.nkp.cz/F/?func=find-c&local_base=aut&ccl_term=ica=ola2002161287 — اخذ شدہ بتاریخ: 28 ستمبر 2023
- ↑ http://www.worldatlas.com/webimage/countrys/europe/switzerland/chfamous.htm
- ↑ http://blogcritics.org/culture/article/a-nasty-mathematical-myth/
- ↑ عنوان : Euler: Genius Blind Astronomer Mathematician — http://blogcritics.org/culture/article/a-nasty-mathematical-myth/
- ↑ https://www.famousscientists.org/leonhard-euler/
- ^ ا ب دائرۃ المعارف بریطانیکا آن لائن آئی ڈی: https://www.britannica.com/biography/Leonhard-Euler
- ↑ این کے سی آر - اے یو ٹی شناخت کنندہ: https://aleph.nkp.cz/F/?func=find-c&local_base=aut&ccl_term=ica=ola2002161287 — اخذ شدہ بتاریخ: 15 دسمبر 2022
- ↑ این کے سی آر - اے یو ٹی شناخت کنندہ: https://aleph.nkp.cz/F/?func=find-c&local_base=aut&ccl_term=ica=ola2002161287 — اخذ شدہ بتاریخ: 3 جنوری 2023
- ↑ مصنف: فرانس کا قومی کتب خانہ — http://data.bnf.fr/ark:/12148/cb12157666x — اخذ شدہ بتاریخ: 17 فروری 2019 — اجازت نامہ: آزاد اجازت نامہ
- ↑ این کے سی آر - اے یو ٹی شناخت کنندہ: https://aleph.nkp.cz/F/?func=find-c&local_base=aut&ccl_term=ica=ola2002161287 — اخذ شدہ بتاریخ: 1 مارچ 2022
- ↑ مصنف: فرانس کا قومی کتب خانہ — http://data.bnf.fr/ark:/12148/cb12157666x — اخذ شدہ بتاریخ: 10 اکتوبر 2015 — اجازت نامہ: آزاد اجازت نامہ
- ↑ کونر آئی ڈی: https://plus.cobiss.net/cobiss/si/sl/conor/6669155
- ↑ این کے سی آر - اے یو ٹی شناخت کنندہ: https://aleph.nkp.cz/F/?func=find-c&local_base=aut&ccl_term=ica=ola2002161287 — اخذ شدہ بتاریخ: 7 نومبر 2022
- ↑ https://www.amacad.org/sites/default/files/media/document/2019-10/electionIndex1780-1799.pdf
- ↑ https://www.amacad.org/sites/default/files/media/document/2019-10/electionIndex1780-1799.pdf
- ↑ William Dunham (1999)۔ Euler: The Master of Us All۔ The Mathematical Association of America۔ صفحہ: 17
- ↑ B.F. Finkel (1897)۔ "Biography- Leonard Euler"۔ The American Mathematical Monthly۔ 4 (12): 300۔ ISSN 0002-9890۔ JSTOR 2968971۔ doi:10.2307/2968971 الوسيط
|pages=
و|page=
تكرر أكثر من مرة (معاونت) - ↑ Ioan James (2002)۔ Remarkable Mathematicians: From Euler to von Neumann۔ Cambridge۔ صفحہ: 2۔ ISBN 0-521-52094-0
- ↑ Euler's Dissertation De Sono : E002. Translated & Annotated by Ian Bruce. (PDF) . 17centurymaths.com. Retrieved on 2011-09-14.
- ↑ Calinger، Ronald (1996)۔ "Leonhard Euler: The First St. Petersburg Years (1727–1741)"۔ Historia Mathematica۔ 23 (2): 156۔ doi:10.1006/hmat.1996.0015
- ↑ Calinger، Ronald (1996)۔ "Leonhard Euler: The First St. Petersburg Years (1727–1741)"۔ Historia Mathematica۔ 23 (2): 125۔ doi:10.1006/hmat.1996.0015
- ↑ Calinger، Ronald (1996)۔ "Leonhard Euler: The First St. Petersburg Years (1727–1741)"۔ Historia Mathematica۔ 23 (2): 124۔ doi:10.1006/hmat.1996.0015
- ↑ Calinger، Ronald (1996)۔ "Leonhard Euler: The First St. Petersburg Years (1727–1741)"۔ Historia Mathematica۔ 23 (2): 128–129۔ doi:10.1006/hmat.1996.0015
- ↑ Nicolas Fuss۔ "Eulogy of Euler by Fuss"۔ 26 دسمبر 2018 میں اصل سے آرکائیو شدہ۔ اخذ شدہ بتاریخ 30 اگست 2006
- ↑ "E212 – Institutiones calculi differentialis cum eius usu in analysi finitorum ac doctrina serierum"۔ Dartmouth
- ↑ William Dunham (1999)۔ Euler: The Master of Us All۔ The Mathematical Association of America۔ xxiv–xxv
- ↑ Euler (1835 english translation)۔ letters of euler on different subjects in natural philosophy addressed to a german princess۔ harper۔ 26 دسمبر 2018 میں اصل سے آرکائیو شدہ
- ↑ I.R. Gekker، A.A. Euler (2007)۔ "Leonhard Euler's family and descendants"۔ $1 میں N.N. Bogoliubov، G.K. Mikhaĭlov، A.P. Yushkevich۔ Euler and modern science۔ Mathematical Association of America۔ ISBN 0-88385-564-X، p. 405.
- ↑ A. Ya. Yakovlev (1983)۔ Leonhard Euler۔ M.: Prosvesheniye
- ↑ John Derbyshire (2003)۔ پرائم آبسیشن: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics۔ Washington، D.C.: Joseph Henry Press۔ صفحہ: 422
- ↑ Carl B. Boyer; Uta C. Merzbach (1991)۔ A History of Mathematics۔ جان وائلی اینڈ سنز۔ صفحہ: 439–445۔ ISBN 0-471-54397-7 Cite uses deprecated parameter
|coauthors=
(معاونت) - ↑ Stephen Wolfram۔ "Mathematical Notation: Past and Future"۔ 01 فروری 2009 میں اصل سے آرکائیو شدہ۔ اخذ شدہ بتاریخ August 2006
- ↑ Gerhard Wanner; Harrier، Ernst (2005)۔ Analysis by its history (1st ایڈیشن)۔ Springer۔ صفحہ: 62 Cite uses deprecated parameter
|coauthors=
(معاونت) - ↑ Carl B. Boyer; Merzbach، Uta C. (1991)۔ A History of Mathematics۔ جان وائلی اینڈ سنز۔ صفحہ: 439–445۔ ISBN 0-471-54397-7 Cite uses deprecated parameter
|coauthors=
(معاونت) - ↑ William Dunham (1999)۔ "3،4"۔ Euler: The Master of Us All۔ The Mathematical Association of America
- ↑ Caldwell، Chris. The largest known prime by year
- ↑ Gerald Alexanderson (2006)۔ "Euler and Königsberg's bridges: a historical view"۔ Bulletin of the American Mathematical Society۔ 43 (4): 567۔ doi:10.1090/S0273-0979-06-01130-X
- ↑ Peter R. Cromwell (1997)۔ Polyhedra۔ Cambridge: Cambridge University Press۔ صفحہ: 189–190
- ↑ Calinger، Ronald (1996)۔ "Leonhard Euler: The First St. Petersburg Years (1727–1741)"۔ Historia Mathematica۔ 23 (2): 144–145۔ doi:10.1006/hmat.1996.0015
- ↑ E65 — Methodus... entry at Euler Archives. Math.dartmouth.edu. Retrieved on 2011-09-14.
مزید پڑھیے
ترمیم- Lexikon der Naturwissenschaftler، (2000)، Heidelberg: Spektrum Akademischer Verlag.
- Bogolyubov، Mikhailov، and Yushkevich، (2007)، Euler and Modern Science، Mathematical Association of America. ISBN 0-88385-564-X. Translated by Robert Burns.
- Bradley، Robert E.، D'Antonio، Lawrence A.، and C. Edward Sandifer (2007)، Euler at 300: An Appreciation، Mathematical Association of America. ISBN 0-88385-565-8
- Demidov، S.S.، (2005)، "Treatise on the differential calculus" in آئیور گراٹان گنز، ed.، Landmark Writings in Western Mathematics. Elsevier: 191–98.
- ویلیم ڈنہام (1999) Euler: The Master of Us All، Washington: Mathematical Association of America. ISBN 0-88385-328-0
- Dunham، William (2007)، The Genius of Euler: Reflections on his Life and Work، Mathematical Association of America. ISBN 0-88385-558-5
- Fraser، Craig G.، (2005)، "Leonhard Euler's 1744 book on the calculus of variations" in آئیور گراٹان گنز، ed.، Landmark Writings in Western Mathematics. Elsevier: 168–80.
- Gladyshev، Georgi، P. (2007)، "Leonhard Euler’s methods and ideas live on in the thermodynamic hierarchical theory of biological evolution،" International Journal of Applied Mathematics & Statistics (IJAMAS) 11 (N07)، Special Issue on Leonhard Paul Euler’s: Mathematical Topics and Applications (M. T. A.).
- Gautschi، Walter (2008)۔ "Leonhard Euler: his life، the man، and his works" (PDF)۔ SIAM Review۔ 50 (1): 3–33۔ Bibcode:2008SIAMR..50....3G۔ doi:10.1137/070702710
- Heimpell، Hermann، Theodor Heuss، Benno Reifenberg (editors). 1956. Die großen Deutschen، volume 2، Berlin: Ullstein Verlag.
- D.J. Krus (2001)۔ "Is the normal distribution due to Gauss? Euler، his family of gamma functions، and their place in the history of statistics"۔ Quality and Quantity: International Journal of Methodology۔ 35: 445–46۔ 26 دسمبر 2018 میں اصل سے آرکائیو شدہ۔ اخذ شدہ بتاریخ 19 اگست 2012 آرکائیو شدہ (Date missing) بذریعہ visualstatistics.net (Error: unknown archive URL)
- Nahin، Paul (2006)، Dr. Euler's Fabulous Formula، New Jersey: Princeton، ISBN 978-0-691-11822-2
- du Pasquier، Louis-Gustave، (2008) Leonhard Euler And His Friends، CreateSpace، ISBN 1-4348-3327-5. Translated by John S.D. Glaus.
- Reich، Karin، (2005)، " 'Introduction' to analysis" in آئیور گراٹان گنز، ed.، Landmark Writings in Western Mathematics. Elsevier: 181–90.
- Richeson، David S. (2008)، Euler's Gem: The Polyhedron Formula and the Birth of Topology. Princeton University Press.
- Sandifer، Edward C. (2007)، The Early Mathematics of Leonhard Euler، Mathematical Association of America. ISBN 0-88385-559-3
- Sandifer، Edward C. (2007)، How Euler Did It، Mathematical Association of America. ISBN 0-88385-563-1
- Simmons، J. (1996) The giant book of scientists: The 100 greatest minds of all time، Sydney: The Book Company.
- Singh، Simon. (1997). Fermat's last theorem، Fourth Estate: New York، ISBN 1-85702-669-1
- Thiele، Rüdiger. (2005). The mathematics and science of Leonhard Euler، in Mathematics and the Historian's Craft: The Kenneth O. May Lectures، G. Van Brummelen and M. Kinyon (eds.)، CMS Books in Mathematics، Springer Verlag. ISBN 0-387-25284-3.
- "A Tribute to Leohnard Euler 1707–1783"۔ میتھمیٹکس میگزین۔ 56 (5)۔ 1983
بیرونی روابط
ترمیملیونہارڈ اویلر کے بارے میں مزید جاننے کے لیے ویکیپیڈیا کے ساتھی منصوبے: | |
لغت و مخزن ویکی لغت سے | |
انبارِ مشترکہ ذرائع ویکی ذخائر سے | |
آزاد تعلیمی مواد و مصروفیات ویکی جامعہ سے | |
آزاد متن خبریں ویکی اخبار سے | |
مجموعۂ اقتباساتِ متنوع ویکی اقتباسات سے | |
آزاد دارالکتب ویکی ماخذ سے | |
آزاد نصابی و دستی کتب ویکی کتب سے |
- Encyclopædia Britannica article
- How Euler did it
- Euler Archive
- Leonhard Euler – Œuvres complètesآرکائیو شدہ (Date missing) بذریعہ portail.mathdoc.fr (Error: unknown archive URL) Gallica-Math
- Euler Committee of the Swiss Academy of Sciencesآرکائیو شدہ (Date missing) بذریعہ leonhard-euler.ch (Error: unknown archive URL)
- References for Leonhard Euler
- Euler Tercentenary 2007
- The Euler Society
- Leonhard Euler Congress 2007—St. Petersburg، Russia
- Project Euler
- Euler Family Tree
- Euler's Correspondence with Frederick the Great، King of Prussia
- "Euler – 300th anniversary lecture"آرکائیو شدہ (Date missing) بذریعہ gresham.ac.uk (Error: unknown archive URL)، given by Robin Wilson at گریشہام کالج، 9 May 2007
- Euler Quartic Conjecture